Soil Profile Description

Soil name: Si Thon series Profile code No.: St

Classification: col, Aquic (Fluventic) Haplustepts

Sheet Name: Sheet No.:

Coordinate: approx. 175 m.

48Q 347385E 1832957N **Elevation:** MSL

Relief: Flat Slope: 2 %

Physiography: lower part (depression) of peneplain

Parent material: alluvium

Drainage: somewhat poorly **Permeability:** slow

drained

Runoff: low Ground water depth: at 200 cm

Flooding depth: - Duration: - Frequency: -

Annual rainfall: mm Mean Temp.: °C Climate type: Tropical savanna (Aw)

Natural vegetation or land use: Rice

Other:

Described by: N. Janjirawuttikul et al. **Date:** May 6, 2025

Horizon	Depth (cm)	Description
Apg	0-28	Dark gray (10YR4/1) 70% and brown (7.5YR 5/2) 30%, common
		medium distinct yellowish brown (10YR5/8) and common medium
		distinct brownish yellow (10YR6/6) mottles; sandy loam; very fine
		single grained, moderate fine to medium and strong coarse to very
		coarse subangular blocky structure, friable, slightly sticky and slightly
		plastic; common very fine to fine vesicular pores and few fine to
		medium tabular pores; many very fine to fine roots; slightly alkaline
		(field pH 7.5); abrupt and smooth boundary to Bg1.
Bg1	28-58	Brown (7.5YR5/2) 30%, (7.5YR 5/4) 40% and light brown (7.5YR 6/4)
		30%; few medium distinct strong brown (7.5YR4/6) mottles; sandy
		loam; very fine single grained; loose, non-sticky and non-plastic;
		many very fine to fine vesicular pores; slightly alkaline (field pH 7.5);
		clear and smooth boundary to Bw1.

Horizon	Depth (cm)	Description
Bw1	58-90	Light brown (7.5YR 6/4) 40% and pink (7.5YR 7/4) 60%; sandy loam;
		very fine single grained; loose, non-sticky and non-plastic; many very
		fine to fine vesicular pores; neutral (field pH 7.0); gradual and
		smooth boundary to Bw2.
Bw2	90-120	Brown (7.5YR 5/4) 60% and pink (7.5YR 7/4) 60%; loamy sand; very
		fine single grained; loose, non-sticky and non-plastic; common very
		fine to fine vesicular pores; neutral (field pH 7.0); clear and smooth
		boundary to Bw2.
Bw3	120-150	Pink (7.5YR 7/4); many coarse distinct yellowish brown (10YR5/8)
		mottles; loamy sand; very fine single grained; loose, non-sticky and
		non-plastic; common very fine to fine vesicular pores; neutral (field
		pH 7.0); clear and smooth boundary to BC.
BC	150-175	Light brown (7.5YR 6/4) 70% and light brownish gray (10 YR 6/2) 30%;
		common medium distinct yellowish brown (10YR5/8) and brownish
		yellow (10 YR 6/8) mottles; loamy sand; very fine single grained;
		loose, non-sticky and non-plastic; common very fine to fine
		vesicular pores; very strong acid (field pH 5.0); abrupt and smooth
		boundary to C
C	175-200	Gray (2.5Y 6/1) 45%, light yellowish brown (2.5Y 6/3) 30% and pink
		(7.5 YR 7/4) 25%; few medium distinct brownish yellow (10 YR 6/6)
		mottles; clay; moderate very fine to medium subangular blocky
		structure; slightly sticky and slightly plastic; few medium to coarse
		roots; strongly acid (field pH 5.5).

ANALYSIS RESULTS Profile code No.

	Partide size distribution analysis (% by weight)							Tex	ture	рŀ	+	CaCO ₃	P (mg	g kg ⁻¹)	K (mg kg ⁻¹)	Density bulk	Field moist	Water c	ontent	Available	Saturat	ed	P > 2		
														%			NH4OAc	(Mg m ⁻³)	(% by	(% by v	weight)	water	Hydrau	lic	mm (%
Depth (cm)	Horizon	US	DA gradi	A grading Sand-fraction grading				Lab	Field	1:1	1:1		Bray 2	Olsen			weight)			capacity	conduct	ivity	by wt.).		
		sand	silt	clay	VC	С	m	f	vf	result	estim ⁿ	water	KCI							1/3	15		(cm hr ⁻¹)	Class	
																				atm.	atm.		(cm nr)	Class	

Depth	Air dried	Moisture	С	ОМ	N	Ex		capacity (cmol ₍₊₎		ations	Extr.	CE	EC	Base sat			Al KCI extr.	Electr	otical ds/m)	Fe-EDTA	Fe2O3
(cm)	to oven dried	(%)	(%)	(%)	(%)	Ca	Mg	Na	K	SUM	acidity	NH ₄ OAc	100g clay	NH ₄ OAc	By SUM	(cmol ₍₊₎ /kg)	(cmol(+)kg- 1)	Ece	Ec 1:5	(%)	DCB (%)

MINERALOGY OF THE CLAY FRACTION

Soil series:

Depth (cm)	Horizon	Kaolinite	Illite	Montmorillonite	Vermiculite	7A° clay	0.7&1.0 nm clay	1.0&1.4nm clay	Quartz	Anatest	Hematite	Gibbsite	Other

MINERALOGY OF THE CLAY FRACTION

Soil series:

Depth (cm)	Horizon	Quartz	Feldspar	Mica	Goethite	Hematite	Ilmenite	Anatase	Gibbsite	Calcite	Magnetite	7A° clay	10A° clay	Others
						·								
										•				

tr = trace, x = small, xx = moderate, xxx = large, xxxx = dominant, nd = not determine

MINERALOGY OF THE CLAY FRACTION

Soil series:

Depth	Horizon	ชนิดและ	ปริมาณของเ	แร่ธรรม	ชาติ (who	ole soil)	ชา์	ชนิดและแร่ดินเหนียวในดินใน กลุ่มแร่ดินเหนียวเคโอลีไนต์ อิลไลต์ มอนต์มอริลไลไนต์ คลอไรด์ เวอร์มิคิวไลต์ แร่ดินเหนียวสอดชั้น										
(cm.)		Smectite	Kaolinite	Illite	Quartz	Feldspar	smectite	Kaolinite	Illite	interstratified clay minerals	Quartz	Chlorite	Vermiculite	Goethite	Gibbsite			

tr = trace, x = small, xx = moderate, xxx = large, xxxx = dominant, nd = not determine